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On Interesting Walks in a OPaph 
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Notions of  interesting walks and of their equivalence are introduced. A 
general formula for the number F~ of equivalence classes of interesting walks 
of length l in a given graph G is derived and applied for l < 5 so as to express 
F~ in terms of the adjacency matrix of G. 
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1. I N T R O D U C T I O N  

A molecule o f  a chemical compound  may be represented by a g r a p h - a  liict 
known to Ca vtey n~ more than a century ago, but little exploited since b.~ 
chemists and physicists. In a liquid-state theory, c27 thermodynamic  properties 
of  substances and mixtures are expressed in terms of  structural contributions 
from segments of  various types contained in molecules and from interactions 
o f  such segments. Such contr ibut ions are determined by numbers  of  certain 
classes of  walks on the graphs. 

For the definition of  a graph, a walk, and other basic graph-theoric 
notions not defined here, see, e.g., Harary(aL To define a physicall) non- 
redundant  walk in a graph, v~e introduce the following notat ion:  for a given 
walk w, E(w), P(w), L(w), and l(w) are the set of  endpoints,  the set of  points. 
the set o f  lines, and the length of  w, respectively. We call two walks u an'd w 
equivalent, u ~ w, i f  

L(u) = L(w) (1) 

l(u) = l(w) (2) 

E(u) = E(w) (3) 
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A walk w ib considered to be redundant if there is a walk u nonequivalent 
to w such that (3) holds and also 

L(u) C L(w) (4) 

e(u) = P(w) (5) 

l(u) ~ / ( w )  (6) 

Relevant for the appfications mentioned above is the number F~(G) of 
equivalence classes of open nonredundant  walks of length l in a given graph 
G (note that a walk equivalent to a nonredundant  one is itself nonredundant).  
We call such walks interesting. 

A problem originating in sociology--communication relationships 
in a group of people--  treated by Ross and Harary (a) involves counting walks. 
In distinction to the present case, a graph representing their problem has all 
lines directed; consequently, the sociometric matrix M is asymmetric. 
Moreover, Ross and Harary  assume all walks which are not paths to be 
redundant. The difference may be seen by considering, e.g.. a \valk w of shape 
~/~, i.e.. the walk number 2 for l = 3 in Fig. 1. Label the points in w as a. 
b, and c, with a at the left end. The walk is not a path, as the point b occurs 
twice. However. the walk under consideration ~s interesting, as it is neither 
closed nor is there any walk u of l ~ 3 fulfilling the conditions (3)-(5): from 
the point of view of the problem mentioned in the beginning of this section. 
the walk w represents the effect of proximity of c upon the a -- b s\~tcm. 

Iv this paper, we give the general formula for -Pz(G) and apply it tbr 
! ~ 5 in order to express /'z(G) in terms of the adjacency matrix of G. In 
principle, the same method may be used for l > 5; complications, however. 
grow quickly, as in the case of Harary and Manvel, ~) who count cycles of  
length n ~ 5 and find that "the situation gets rather out of  hand for 
higher n." 

2. G E N E R A L  F O R M U L A  

In order to find F~(G), we define the shape of a walk. We call two walks 
u and w isomorphic if there is a monomorphism f on P(u) such 
that w = f (u) ,  i.e., u.7-- ulu2 "'" u~, where u l ,  uo ..... u,  are points, and 
w = f ( u l ) f ( u 2 )  ""f(u,~). The class of walks isomorphic to w is the shape of 
w, denoted by or(w). Since I(u) = l(w), we set /(or) = /(u) and call l((T) the 
length of c. We prove the following lemma. 

Lemma. A walk isomorphic to an interesting one is itself interesting. 
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Proof. Assume that J" is a monomorphisna O1] /O('O,'), that f(w) is 
interesting, and that w is not. Clearly, w is not  closed, hence it is redundant. 
Therefore, there exists a v~a lk  u nonequivalent to w satisfying (3)-(6). We get 

E(f (u) )  = fE(u)  = fE(w)  = E( f (w) )  

P( f (u) )  = fP(u)  = fP (w)  = P(fO*')) 

L(f(u)) = fL(u)  CfL(w) = L(f(w)) 

/(/(.)) = ; ( . )  ,~ ;(,,,) = ; ( l ( w ) )  

Sincef(w) is interesting, we infer t ha t f (u )  ~ f O v ) .  But then 

Cg(u)) = L(f~w)) 
l ( f (u))  = l ( f (w))  

E( f (u) )  = E( f (w))  

and s ince f i s  a monomorphism,  

L(zO = Li~')  

l (u)  = l (w)  

E(.u) = E0, , )  

and u ---- w. a contradiction. 
In view of the lemma, we define an interesting shape as the slnape of an 

interesting walk. Two shapes c~ and e.  are called equivalent if there are 
equivalent walks );'z and w e such that ~-, = cr(w~), with i = 1, 2. The relation 
has the usual 'properties. but this fact is not necessary for the proof  of the 
following theorem. 

T h e o r e m .  The number /'z(G) of equivalence classes of  interesting 
walks of length l in  G is given by Hie fomuia 

F ~ ( 6 ) -  y_. [w(~ ,  G)/e(~)l !7)  
,,gs 

where S is any maximal set of pairwise nonequivalent interesting shapes cr of  
length l, w(c,, G) is the number of walks of  shape c~ in G, and e(e) is the 
maximal number of distinct equivalent walks of  shape c~. 

Proof. Let w be any interesting walk. Since S is maximal, or(w) is 
equivalent to a certain shape ~z e S. By definition of the equivalence of shapes. 
there exist walks u and t such that 

u ~ t, ,~(zO = ~ ( w ) ,  ,~(t) = ~: ~ s .  
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B> the definition of  a shape, there exists a m o n o m o r p h i s m f o n P ( u )  such that 
w = f ( u ) ;  on the other hand,  

L(u) = L(t), l(u) = l(t), E(u) = Eft)  

It follows that  

L ( w )  = L ( f ( u ) )  = f L ( u )  = f L ( t )  = L ( f ( t ) )  

l (w )  = l ( f ( u ) )  = l (u)  = l ( t )  = l ( f ( t ) )  

E(w) = E( f (u))  = rE(u) = l e f t )  = E( f f t ) )  

hence w " ~ f ( t )  and e ( f ( t ) )  = e f t ) ~ S .  Therefore, any equivalence class C 
is represented by a walk o f  one and only one shape crs S. We prove that it 
is represented by at least e(cr) walks of  shape e. Indeed,  let w ~ C. {~(w) --: ,~. 
By the definition of  e(G), there exist distinct equivalent walks , i  
[i = I, 2,..., e(c~)] with G ( w i ) =  c~. Since e(w 1) = e(w), there is a mono-  
morphism g on P(w) such that  w = g(wa). It  follows from 

L(w3 = L(wO, l (w3 = l(wO, E(w3  = E(wO, 1 < i :-~ e(~) 

that  

L(.g(.w,)) = L(w), l ( g ( w O )  = l (w) ,  E(g(,,A) = E(w) 

hence the walks g(w~) all of shape G are equivalent to w. Since g is a mono- 
morphism, tl~ey are also distinct. Since e(G) is the nTaximal number of distinct 
equivalent ~ alks of shape G, C is represented exactly b\ e(G) ~alk~ of ~hape ,:. 
Thus, shape G represents w(,~, G)/e(G) equivalence cla~,~e~ and the total 
number  of  the classes is given by formula  (7). 

3~ C O U N T I N G  W A L K S  FOR /~<5 

Denote  the walk reverse to w by w'. It is easy to see that  if 
or(u) = a(w) = cr, then c~(u') = ~r(w'). This pe.rmits us to call ~' = G(u') the 
reverse shape of  or(u). In Fig. 1 we have adopted the convention of  drawing 
shapes beginning from the left end, so that the respecti~e reverse shape~ 
begin f rom the right, The figure shows all possible shapes of  walks for 
l ~ 5. If  cr = or', then e(cr) ~> 2, since clearly w ,~ w'. 

Let G have p points Iabeled c~, c~ ..... % and let A be the adjacency 
matrix of  G. Set 

A " ' =  [a'31 
p 

~ct) = 2 a!{l Ui ~j 
J = l  

i = l  



"[ "~!=:[ u! posn s~ s:~d!J~sqns oql tB!A~ ~ " " %  
sxo~:~oi ~q; ~ Joj  o~n;!~sqns oA~ "(,~),~ = (~),~ l~ql  o~ou ~.(o).~t o~, (~ ~O),~ 
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F o r  the consecu t ive  va lues  o f  l, we o b t a i n  as l 'o l lo~s .  

l - - -  1. S =  {-h},e(%) = 2: Hence ,  

/"1 ----- -~ w(a l )  = {-wl ----- } a m  = } t r  A" 

l = 2. S = {fl~}, e ( f l l )  = 2. Hence ,  

/ '2  = �89 = �89 = ~(a c - ' ) :  - -  t r  A 2) = 1 ( a t ' - '  - -  a (1))  

l = 3 .  S = { 7 , , T a } , e ( 7 0 " =  2, e(7o_) = 1. Hence ,  

r~ = ~w(r~) + w(r..) = �89 + w(>_) + w(r~)] 

= } [% - -  w(ya)] = .}[Wa - -  wl] = ~(a ial - -  a ~1~ - -  tr  .4"q 

I - -  4. S = { 8 ~ , 3 , . , 3 a , 8 9 } ,  e ( 8 1 ) = e ( S a )  = 2, e(&:) = 1, e(89) = 2. 

T o  see the  l as t  equa l i t y ,  no t e  t h a t  the  wa lks  (12342) a n d  (12432) are  b o t h  o f  
shape  89 �9 Hence ,  

v ,  = ->.,(8~) + w ( & )  + ~-,,.(~) <- ..~,~.(s~) 

N o w ,  

H e n c e ,  

,1'(6~) - -  w(51)  = w~ = a ~'~ - a ~" 

= 2 - 2) = Y aiz k a i  ~ , - -  I- tr A a 
i = l  

w(81o) = lr(Sn) = w(y4)  =- t r  A a 

r p 

F 4 - =  ~ (a ' ~ -  2a ~2) - - 2 a  ~1,~ - - t r , - I  4 --. tr A a - -  k/-a, :>a,1,)  
\ / 

1 =  5. Here ,  S =  { q , e . ~ , ~ a , % , ~ , q z , q ~ , q ~ , q o : q ~ ] .  N o t e  tha t  
~20 a n d  ~.~a are  e q u i v a l e n t  s ince the  wa lks  (I 23143) a n d  (123413) are  equ iva l en t .  
F u r t h e r ,  

e ( q )  = e ( E 6 )  = e ( E , 0 )  = , ,  ~ e(E. , )  = e ( ~ a )  = e ( e g )  = 1 

e(q2)  = e(q~)  = e(q~)  = 2, e(q~)  = 4. " 

T o  see the  las t  two  equa l i t i es ,  no te  t h a t  (123242) a n d  (124232.) are  bo th  o f  
s h a p e  q 2 ;  (123452) a n d  (125432) a re  b o t h  o f  shape  q ~ '  (123453) a n d  
(123543) are  b o t h  o f  shape  q ~ ,  (123425),  (124o,.5), (524321),  a n d  (523421) 
are  a l l  o f  s h a p e  e~4. 
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Hence,  

/ ' :  = �89 + w(,~) + w( : , )  + �89 + w(:~) + -~w(~,9 

+ �89 + �89 + .~w(,.,~) + ~w(r 

= �89 - 2w(e: )  - w(en) - -  2w(:s )  - -  2w(ea) - -  w(::o ) - -  2w(c~:)  

- -  w(~ , . )  - -  w( : : : )  - -  w(~:b  - - w ( , : ~ )  - - w ( : , )  - -  2w( , . , 9  - -  -.:., w(,. ,:) 
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- -  2w(E25) - -  2 w ( e 2 6  ) - -  2w(~27) - -  2w(E2s)  - -  w(%o ) ]  

N o w ,  

w(~) = w ( % )  = v47' : )  = w~ - 2 w , ~  - w :  = a ~3~ - 2cl ~ '  + a: ~' 

w ( e s )  = w ( % )  = w ( E n )  = w(/31) = w.~ = a ~e' - -  a (1' 

w ( , ~ o )  = w ( ~ 0  = a ~ '  

w(%2)  6 

~9 

w(~a6) = w ( e l 0  = w ( 3 s )  = t r  A a - a (~ - 2 ( a  ~'~ - a t1~) -:- t r  A a - 2 a  ~/ ~ -  a ~l> 

_ ~ a ,~>{a:  1' - -  2 )  
w(~.,~) = 2 i ik 2 

i=1 

w(e,~)~. = w(%~)  = w ( e , :  ) _  ~-  w((39) = S-. a('~l(aIllzi. ~ - - 2 )  
i=1  

H e n c e ;  

I '~  = ~ ! a  (~  - -  3 a  (3~ + 6 a  (zJ - -  a <1~ - -  t r  A 5 - -  3 t r  A a 

-- 6 ~ t ~ 3 ) - - ~  a [al~ 'z- i  a:~l-2)+5a'z:'. 9]  
=1 i=1  i~ : \ 2 

2 ~ (a l:l a:~> r - - ,  



t10 Wi to ld  Brostow and Andrzej Schinzel 

R E F E R E N C E S  

1. A. Cayley, Phil. Mag. 13:19 (1857). 
2. W. Brostow, Phys. Chem. Liq., to be published. 
3. F. Harary, Graph Theo~3', Addison-Wesley, R~ading,.Mass. (1969). 
4. I. C. Ross and F. Harary, Psychometrika 17:195 (1952)o 
5. F. Harary and B. Manvel, preprint from the University of Michigan. 


