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On Interesting Walks in a Graph

Witold Brostow!® and Andrze; Schinzel?
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Notions of interesting walks and of their equivalence are introduced. A
general formula for the number I'; of equivalence classes of interesting walks
of length /in a given graph G is derived and applied for / < 5 50 as to express
I, in terms of the adjacency matrix of G.
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1. INTRODUCTION

A molecule of a chemical compound may be represented by a graph—a fuct
known to Cayley™ more than a century ago, but little exploited since by
chemists and physicists. In a liquid-state theory,'® thermodynamic properties
of substances and mixtures are expressed in terms of structural contributions
from segments of various types contained in molecules and from interactions
of such segments. Such contributions are determined by numbers of certain
classes of walks on the graphs. :

For the definition of a graph, a walk, and other basic graph-theoric
nouons not defined here, see, e.g.. Harary®. To define a physically non-
redundant walk in a graph, we introduce the following notatjon: for a given
walk w, E(w), P(w), L(w), and I(w) are the set of endpoints, the set of points.
the set of lines, and the length of w, respectively. We call two walks u and w
equivalent, v ~ w, if

L(u) = L(w) H
) = 1w) (2)
E@u) = E(w) (3)
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A walk w is considered to be redundant if there is a walk v nonequivalent
to w such that (3) holds and also

L) C L(w) («4)
PG = W) )
) < I(w) (6)

Relevant for the applications mentioned above is the number I'(G) of
equivalence classes of open nonredundant walks of length / in a given graph
G (note that a walk equivalent to a nonredundant one is itself nonredundant).
We call such walks interesting. '

A problem originating in sociology—communication relationships
in a group of people— treated by Ross and Harary® involves counting walks.
In distinction to the present case, a graph representing their problem has all
lines directed; consequently, the sociometric matrix M is asymmetric.
Moreover, Ross and Harary assume all walks which are not paths to be
redundant. The difference may be seen by considering. e.g.. a walk w of shape
~y, Le.. the walk number 2 for / = 3 in Fig. |. Label the points in w as a.
b, and ¢, with a at the left end. The walk is not a path, as the point & occurs
twice. However. the walk under consideration is interesting, as it is neither
closed nor 1s there any walk v of / < 3 fulfilling the conditions (3)-(5); from
the point of view of the problem mentioned in the beginning of this section.
the walk w represents the effect of proximity ot ¢ upon the ¢ - b system,

In this paper, we give the general formula for I'(G) and apply it for
7 < 5 in order to express I',(G) in terms of the adjacency matrix of G. In
principle, the same method may be used for / > 5; complications, however.
grow quickly, as in the case of Harary and Manvel,’” who count cycles of
length n << 3 and find that “the situation gets rather out of hand for
higher n.”

2. GENERAL FORMULA

In order to find I',(G), we define the shape of a walk. We call two walks
u and w isomorphic if there is a monomorphism f on P(u) such
that w = f(u), i.e., u = wu, -+ u,, where u;,u,,..,u, are points, and
w = f(u) f(us) - f(u,). The class of walks isomorphic to w is the shape of
w, denoted by o(w). Since /(1) = I(w), we set (o) = I(1) and call /{s) the
length of ¢. We prove the following lemma.

Lemma. A walk isomorphic to an interesting one is itself interesting.
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Proof. Assume that f Is a monomorphism on P(¢), that f(w) is
interesting, and that w is not. Clearly, w is not closed, hence it is redundant.
Therefore, there exists a walk 1 nonequivalent to w satisfying (3)-(6). We get

- E(f(w) = fE(u) = fE(w) = E(f(W))
P(f@)) = fP(u) = fP(w) = P(f(w))
L(fQ) = fL() CFLOY) = L(f ()
Q) = Iu) < Iow) = I(f(w))

Since f(w) is interesting. we infer that f (1) ~ f(w). But then
L{fw) = L{f(»)
(f() = I(f(w)
E(f(uw) = E(f(w))

and since f'is a monomorphism,

L) = L)
H(u) = I(w)
Eu) = E(w)

and v ~ w, a contradiction.

In view of the lemma. we define an interesting shape as the shape ol an
interesting walk. Two shapes o, and o, are called equivalent if there are
equivalent walks wy and w, such that o; = o(w;), with 7 = 1, 2. The relation
has the usual properties. but this fact is not necessary for the proof of the
following theorem.

Theorem. The number I'(G) of equivalence classes of interesting
walks of length /in G is given by the fomula
I(G) = Y, [wio, G)fe(o)] (7)
cES
where S is any maximal set of pairwise nonequivalent interesting shapes o of

length /, w(o, G) is the number of walks of shape ¢ In G, and ¢(o) is the
maximal number of distinct equivalent walks of shape o.

Proof. Let w be any interesting walk. Since S is maximal, o(w) is
equivalent to a certain shape o, € S. By definition of the equivalence of shapes.
there exist walks « and ¢ such that

u~1, o{u) = a(w), o(t) = o, € S.
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By the definition of a shape, there exists a monomorphism /onP(«) such that
w = f(u); on the other hand, -

L) = L(1), Iy = I(r). E(u)y = E(1)

It follows that ‘
L(w) = L(f(w)) = fL(u) = fL(t) = L(f(1))
1wy = {fw) = l(w) = U1) = I(f(1))
E(w) = E(f(w) = fE(u) = fE(t) = E(f(1)

hence w ~ f(r) and o(f(#)) = o(t) € S. Therefore, any equivalence class C
1s represented by a walk of one and only one shape o € S. We prove that it
1s represented by at least (o) walks of shape o. Indeed. let w = C. o(w) = .
By the definition of e(o), there exist distinct equivalent walks

morphism g on P(w) such that w = g(w,). It follows from
L(w) = L(wy)),  w) = lwp),  E(w) = E(w). 1 <i<e(0)

that ;
Liglw)) = Lw),  [gwy)) = I(w),  E(giwi) = E(w)

hence the walks g(w,) all of shape o are equivalent to w. Since g is a mono-
morphism, they are also distinct. Since e{c) is the ntaximal number of distinct
equivalent walks of shape o, C is represented exactly by e(a) walks of shape o
Thus. shape o represents w(o, G)/e(c) equivalence clusses and the total
number of the classes is given by formula (7).

3. COUNTING WALKS FOR /5

Denote the walk reverse to w by w'. It is easy to see that if
olu) = o(w) = o, then o(u’) = o(w"). This permits us to call ¢' = o(u’) the
reverse shape of o(v). In Fig. 1 we have adopted the convention of drawing
shapes beginning from the left end, so that the respective reverse shapes
begin from the right. The figure shows all possible shapes of walks for
I < 5. l1fo = ¢, then e(c) = 2, since clearly w ~ w".

Let G have p points labeled ¢, . v, ,..., ¢, and let A be the adjacency
matrix of G. Set
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For the consecutive values of /, we obtain as follows.
I =18 = {xa}, e(ey) = 2. Hence,
)= $w(ey) =y, =

l=2 S =/{B,eB) = 2. Hence,
Ty = 3w(By) = dwy = Ha® — U'A')

i = Jtr4°

l(a('.l) —_ a(l))

=3 S={y1,vs e(y;) = 2, elys) = 1. Hence,

Ty = 3w(yy) + wlys) = $Hw(y) + wlya) + wiyw)]
Dy — wiyg)] = g — wy] = Ha@® — @V —1r A7

e(dy) = 2

= 1

=4, S=1{5,,8,,8;,38), €8, = e(8;) = 2, 9(8)-- |
To see the last equality, note that the walks (12342) and (12432) are both of
shape 8, . Hence,
Iw(8) + u(b 2) <= sw(d;) = Iw(dy)

I'y=14
= 3wy — 2w(0,) — w(8g) — 21(Syy) — w(dy)]
Now,
’ w(d,) = w(B) = ‘1:.3 = g'¥ — 'V
1(8y) = Z aP@V —2) =3 a%al — 2u A’
W{by) = w{(dyy) = wilyy) = tr A3
Hence,

'l\/lﬂ

al ”’ai“)
1

[ =35 Here,S=1{e;, €, €5,6€, €, €, €4, €5 €9 2. NOt& that
€39 and e,5 are equivalent since the walks (1 73 [43) and (123413) are equivalent.

Further,
e(e) = eleg) = e(eq) = 2, ‘-’(62) = e(e;) = e(ey) = |

elern) = elegy) = e(ey;) = 2, e(eay) = 4.

)

=14 (a‘*’ — 2a%® — 2g" —tr 4 — tr A® —

To see the last two equalities, note that (123242) and (124232) are both of
shape €5 ; (123452) and (125432) are both of shape €, ; (123453) and
(123543) are both of shape €5 ; (123425), (124325), (524321), and (523421)

are all of shape e, .
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Hence,

Iy = pw(e) + wler) + wleg) + dn(eg) + wie;) + sw(er)
+ dwler)) + dwlers) + $wleq) + tw(ean)
= 3[ws — 2w(ey) — w(es) — 2n(es) — 2w(eg) — wleyy) — 21(eyy)
— Wlera) — Wle) — Wlers) — Wlegg) — Wlegn) — 20(€zs) — 1(eay)
— 2u(eas) — 2w(ezg) — 2w (eny) — 2W(ezg) — W(ezp)]

Now,
wiey) = w(es) = w(yy) = wy — 2y — uy = a® — g2 = 4
w(eg) = W(ep) = nley) = w(B) = w, = a'® — g

w(€y) = wlay) = a'¥

e agl}\
w(ep) = 6 Z ( 'Y
i=1 /
) al® ,
wlaw =2 % (@ — 2)("5 ) — wlew)
i
P
wies) = 3 aia® — 2) — wiey) — wie,.)
=1

w(e ) = wie;) = w(d,) = tr A*— g - 2(a® — gV) = 1r 4* - 2a? - 'V

N

wley) = wley) = w(e) = w(d,) = 3 aP(a@h —2)
=1

Hence,

Ty = $la® — 32 = 60 — ¥ — tr 45 — 3 tr 41

.
_'6 Z (aél)) B i aﬁ-'f’ [at-z) + (a;hz“ 2) . ?_azl) —— 9}

i=1
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